

Max-Planck-Institut für extraterrestrische Physik

Interpreting H_2 and [OI] line emission of T Tauri disks with photo-evaporative disk wind models

Christian Rab^{1,2}, M. Weber¹, T. Grassi², B. Ercolano¹, G. Picogna¹, P. Caselli², I. Kamp³, W.-F. Thi², P. Woitke⁴ ¹University Observatory Munich - LMU; ²MPE, Garching; ³Kapteyn Institute, Groningen; ⁴IWF, Graz Contact: rab@mpe.mpg.de

Context

- recent observational data show signatures of disk winds in both atomic & molecular species (Gangi et al. 2020)
- many theoretical models for both thermally or magnetically driven winds exits, but a direct comparison of those models to observations is challenging (e.g. computationally expensive, thermo-chemistry, ...)
- here we present an efficient approach that allows for a

Method

- physical disk/wind density structure and velocity field from 2D EUV/X-ray photo-evaporative disk wind models (Picogna et al. 2019; Weber et al. 2020)
- post-process models with the radiation thermo-chemical disk code PRODIMO (e.g. Woitke et al. 2009;

direct comparison of photo-evaporative disk wind models to observations of the atomic ([OI] 0.63 μ m) and molecular tracers (H₂ 2.12 μ m)

Kamp et al. 2010; Thi et al. 2011) to self-consistently calculate the thermal/chemical structure and spectral line profiles

Origin of line emission Line luminosities 10 $L_{\rm acc} = 2.6 \times 10^{-2} L_{\odot}$ $L_{acc} = 0.31 L_{\odot}$ models PE gd models DIANA |OI| 0.63 um 0.63 um Obs. Gangi+ (2020) o-H₂ 2.12 µm - o-H₂ 2.12 μm Obs. Others 10 10 $L_{\rm H_2} = 10^{-5} L_{\odot} \, {\rm I}_{\rm O}$ 10^{0} 10^{1} 10^{1} [cm⁻³] z [au] 8 8 $\mathbf{n}_{\mathrm{H}_2}$ 10^{0} 10^{0} log 6 6 10^{-2} 10-1 10^{-1} **PE-1** 10^{0} 10^{0} 10^{1} 10^{1} 10^{-2} 10^{-1} r [au] r [au] $L_{[OI]} [10^{-5} L_{\odot}]$

- line emitting regions for the H_2 (red box) and [OI] (orange box) spectral lines
- H_2 can survive in the wind region; depends on the far-UV flux (i.e. lower accr. lum. more H_2)
- H_2 is emitted closer to the disk surface and from larger disk radii compared to [OI]

• line lums. are in good agreement with obs.; orange: wind models; brown: no wind models • tendency to underestimate H_2 line luminosities

 10^{0}

 10^{1}

Line kinematics (wind signatures)

Summary & Outlook

- efficient modelling approach to directly confront (magneto) hydrodynamic disk wind models to observations of molecular and atomic wind tracers
- photo-evaporative disk wind models are consistent with the observed line kinematics for the [OI] 0.63 μ m & H₂ 2.12 μ m narrow low-velocity line components
- determination of physical line origins from observations requires modelling due to complex disk/wind structure and limited spatial & spectral resolution of observations

• obs. data is usually fitted by Gaussian components to identify high/low velocity components and shift in the peak emission of the line $(\mathbf{v}_{\mathbf{p}})$ (e.g. Banzatti et al. 2019; Gangi et al. 2020); e.g. blue-shifted $\mathbf{v_p} \rightarrow \text{disk}$ wind

0.8

1.0

- use same procedure for synthetic observables (*coloured symbols* are the models)
- good agreement for the narrow low-velocity component ($v_p \approx \text{few km/s}$) for both v_p and the full-width half-maximum (FWHM) of both modelled lines \bullet similar measured v_p and FWHM for both lines do not necessarily indicate same physical origin of line emission; *reasons:* complex wind vel. structure; thin-disk approx. to determine emission radius

Outlook • apply procedure to MHD disk wind models

• other molecular wind tracers (CO ro-vib)

• prediction for future instruments with higher spatial & spectral resolution (e.g. METIS/ELT)

References

• Banzatti, A., et al. 2019, ApJ, 870, 76 • Gangi, M., et al. 2020, A&A, 643, A32 • Kamp, I., et al. 2010, A&A, 510, A18 • Picogna, G., et al. 2019, MNRAS, 487, 691 • Thi, W.-F., Woitke, P., & Kamp, I. 2011, MNRAS, 412, 711 • Weber, M. L., et al. 2020, MNRAS, 496, 223 • Woitke, P., Kamp, I., & Thi, W.-F. 2009, A&A, 501, 383