

Max-Planck-Institut für extraterrestrische Physik

Context

- signatures of disk winds in both atomic & molecular species are now commonly observed (e.g. Gangi et al. 2020; Banzatti et al. 2022)
- many theoretical models for both thermally or magnetically driven winds exits, but a direct comparison of those models to observations is challenging (e.g. computationally expensive, thermo-chemistry, ...)
- here we present an efficient approach that allows for a di-

Modelling atomic and molecular disk wind tracers

Christian Rab^{1,2}, M. Weber¹, T. Grassi², B. Ercolano¹, G. Picogna¹, P. Caselli², I. Kamp³, W.-F. Thi², P. Woitke⁴, A. Banzatti⁵

¹University Observatory Munich - LMU; ²MPE, Garching; ³Kapteyn Institute, Groningen; ⁴IWF, Graz; ⁵Texas State University Contact: rab@mpe.mpg.de

Method

- physical disk/wind density structure and velocity field from 2D EUV/X-ray photo-evaporative disk wind models (Picogna et al. 2019; Weber et al. 2020)
- post-process models with the radiation thermo-chemical disk code PRODIMO (e.g. Woitke et al. 2009; Kamp et al. 2010; Thi et al. 2011) to self-consistently calculate the ther-

rect comparison of photo-evaporative disk wind models to observations of the atomic ([OI] 0.63 μ m) and molecular tracers (H₂ 2.12 μ m, CO ro-vib)

mal/chemical structure and spectral line profiles; see Rab et al. (2022)

Origin of line emission

- line emitting regions for the [OI], H₂ and and one CO ro-vib spectral lines.
- CO and H_2 can survive in the wind region;

Line luminosities

Line kinematics

depending on the far-UV flux

- molecules are emitted closer to the disk surface and from larger disk radii compared to [OI], but also trace different regions
- line lums. are in good agreement with obs. orange: wind models; brown: no wind m.
- tendency to underestimate H_2 line lums. • not done yet for CO ro-vib

$v_p[OI] [kms^{-1}]$

• following approach of the obs.; modelled line profiles are fitted by Gaussian components to identify velocity components and shift in the peak emission of the line $(\mathbf{v}_{\mathbf{p}})$ e.g. blue-shifted $\mathbf{v_p} \rightarrow \text{disk wind}$

• good agreement for v_p (models: *coloured* symbols) and FWHM (see Rab et al. 2022)

Summary & Outlook

• efficient modelling approach to directly confront (magneto) hydrodynamic disk wind models to observations of molecular and atomic wind tracers

• photo-evaporative disk wind models are consistent with the observed line kinematics for the [OI] $0.63 \,\mu\text{m} \& \text{H}_2 2.12 \,\mu\text{m}$ narrow low-

Line profiles (preliminary)

- if molecules can survive in the outer wind region,
- wavelength dependence of absorption feature in
- great potential for deriving wind properties in regions otherwise not seen; models still need to be improved to better understand what we see

References: • Banzatti, A., et al. 2022, The Astronomical Journal, 163, 174 • Gangi, M., et al. 2020, A&A, 643, A32 • Kamp, I., et al. 2010, A&A, 510, A18 • Picogna, G., et al. 2019, MNRAS, 487, 691 • Rab, C., et al. 2022, A&A, 668, A154 • Thi, W.-F., Woitke, P., & Kamp, I. 2011, MNRAS, 412, 711 • Weber, M. L., et al. 2020, MNRAS, 496, 223 • Woitke, P., Kamp, I., & Thi, W.-F. 2009, A&A, 501, 383

velocity line components (**Rab et al. 2022**) • determination of wind characteristics from observations requires modelling due to complex disk/wind structure and limited spatial & spectral resolution of observations

Outlook

• apply procedure to MHD disk wind models • looking for planet-signatures (planet+wind models talk M. Weber)

• prediction for future instruments such as ELT/METIS, but also e.g. ALMA